Where should I use XML?
Its goal is to enable generic SGML to be served, received, and processed on the Web in the way that is now possible with HTML. XML has been designed for ease of implementation and for interoperability with both SGML and HTML.
Despite early attempts, browsers never allowed other SGML, only HTML (although there were plugins), and they allowed it (even encouraged it) to be corrupted or broken, which held development back for over a decade by making it impossible to program for it reliably. XML fixes that by making it compulsory to stick to the rules, and by making the rules much simpler than SGML.
But XML is not just for Web pages: in fact it's very rarely used for Web pages on its own because browsers still don't provide reliable support for formatting and transforming it. Common uses for XML include:
Information identification
because you can define your own markup, you can define meaningful names for all your information items. Information storage
because XML is portable and non-proprietary, it can be used to store textual information across any platform. Because it is backed by an international standard, it will remain accessible and processable as a data format. Information structure
XML can therefore be used to store and identify any kind of (hierarchical) information structure, especially for long, deep, or complex document sets or data sources, making it ideal for an information-management back-end to serving the Web. This is its most common Web application, with a transformation system to serve it as HTML until such time as browsers are able to handle XML consistently. Publishing
The original goal of XML as defined in the quotation at the start of this section. Combining the three previous topics (identity, storage, structure) means it is possible to get all the benefits of robust document management and control (with XML) and publish to the Web (as HTML) as well as to paper (as PDF) and to other formats (e.g. Braille, Audio, etc) from a single source document by using the appropriate style sheets. Messaging and data transfer
XML is also very heavily used for enclosing or encapsulating information in order to pass it between different computing systems which would otherwise be unable to communicate. By providing a lingua franca for data identity and structure, it provides a common envelope for inter-process communication (messaging). Web services
Building on all of these, as well as its use in browsers, machine-processable data can be exchanged between consenting systems, where before it was only comprehensible by humans (HTML). Weather services, e-commerce sites, blog newsfeeds, AJAX sites, and thousands of other data-exchange services use XML for data management and transmission, and the web browser for display and interaction.
Why is XML such an important development?
It removes two constraints which were holding back Web developments:
1. dependence on a single, inflexible document type (HTML) which was being much abused for tasks it was never designed for;
2. the complexity of full SGML, whose syntax allows many powerful but hard-to-program options.
XML allows the flexible development of user-defined document types. It provides a robust, non-proprietary, persistent, and verifiable file format for the storage and transmission of text and data both on and off the Web; and it removes the more complex options of SGML, making it easier to program for.
Describe the role that XSL can play when dynamically generating HTML pages from a relational database.
Even if candidates have never participated in a project involving this type of architecture, they should recognize it as one of the common uses of XML. Querying a database and then formatting the result set so that it can be validated as an XML document allows developers to translate the data into an HTML table using XSLT rules. Consequently, the format of the resulting HTML table can be modified without changing the database query or application code since the document rendering logic is isolated to the XSLT rules.
What is SGML?
SGML is the Standard Generalized Markup Language (ISO 8879:1986), the international standard for defining descriptions of the structure of different types of electronic document. There is an SGML FAQ from David Megginson at http://math.albany.edu:8800/hm/sgml/cts-faq.htmlFAQ; and Robin Cover's SGML Web pages are at http://www.oasis-open.org/cover/general.html. For a little light relief, try Joe English's ‘Not the SGML FAQ’ at http://www.flightlab.com/~joe/sgml/faq-not.txtFAQ.
SGML is very large, powerful, and complex. It has been in heavy industrial and commercial use for nearly two decades, and there is a significant body of expertise and software to go with it.
XML is a lightweight cut-down version of SGML which keeps enough of its functionality to make it useful but removes all the optional features which made SGML too complex to program for in a Web environment.
Aren't XML, SGML, and HTML all the same thing?
Not quite; SGML is the mother tongue, and has been used for describing thousands of different document types in many fields of human activity, from transcriptions of ancient Irish manuscripts to the technical documentation for stealth bombers, and from patients' clinical records to musical notation. SGML is very large and complex, however, and probably overkill for most common office desktop applications.
XML is an abbreviated version of SGML, to make it easier to use over the Web, easier for you to define your own document types, and easier for programmers to write programs to handle them. It omits all the complex and less-used options of SGML in return for the benefits of being easier to write applications for, easier to understand, and more suited to delivery and interoperability over the Web. But it is still SGML, and XML files may still be processed in the same way as any other SGML file (see the question on XML software).
HTML is just one of many SGML or XML applications—the one most frequently used on the Web.
Technical readers may find it more useful to think of XML as being SGML-- rather than HTML++.
Who is responsible for XML?
XML is a project of the World Wide Web Consortium (W3C), and the development of the specification is supervised by an XML Working Group. A Special Interest Group of co-opted contributors and experts from various fields contributed comments and reviews by email.
XML is a public format: it is not a proprietary development of any company, although the membership of the WG and the SIG represented companies as well as research and academic institutions. The v1.0 specification was accepted by the W3C as a Recommendation on Feb 10, 1998.
Why is XML such an important development?
It removes two constraints which were holding back Web developments:
1. dependence on a single, inflexible document type (HTML) which was being much abused for tasks it was never designed for;
2. the complexity of full question A.4, SGML, whose syntax allows many powerful but hard-to-program options.
XML allows the flexible development of user-defined document types. It provides a robust, non-proprietary, persistent, and verifiable file format for the storage and transmission of text and data both on and off the Web; and it removes the more complex options of SGML, making it easier to program for.
Why should I use XML?
Here are a few reasons for using XML (in no particular order). Not all of these will apply to your own requirements, and you may have additional reasons not mentioned here (if so, please let the editor of the FAQ know!).
* XML can be used to describe and identify information accurately and unambiguously, in a way that computers can be programmed to ‘understand’ (well, at least manipulate as if they could understand).
* XML allows documents which are all the same type to be created consistently and without structural errors, because it provides a standardised way of describing, controlling, or allowing/disallowing particular types of document structure. [Note that this has absolutely nothing whatever to do with formatting, appearance, or the actual text content of your documents, only the structure of them.]
* XML provides a robust and durable format for information storage and transmission. Robust because it is based on a proven standard, and can thus be tested and verified; durable because it uses plain-text file formats which will outlast proprietary binary ones.
* XML provides a common syntax for messaging systems for the exchange of information between applications. Previously, each messaging system had its own format and all were different, which made inter-system messaging unnecessarily messy, complex, and expensive. If everyone uses the same syntax it makes writing these systems much faster and more reliable.
* XML is free. Not just free of charge (free as in beer) but free of legal encumbrances (free as in speech). It doesn't belong to anyone, so it can't be hijacked or pirated. And you don't have to pay a fee to use it (you can of course choose to use commercial software to deal with it, for lots of good reasons, but you don't pay for XML itself).
* XML information can be manipulated programmatically (under machine control), so XML documents can be pieced together from disparate sources, or taken apart and re-used in different ways. They can be converted into almost any other format with no loss of information.
* XML lets you separate form from content. Your XML file contains your document information (text, data) and identifies its structure: your formatting and other processing needs are identified separately in a stylesheet or processing system. The two are combined at output time to apply the required formatting to the text or data identified by its structure (location, position, rank, order, or whatever).
Describe the differences between XML and HTML.
It's amazing how many developers claim to be proficient programming with XML, yet do not understand the basic differences between XML and HTML. Anyone with a fundamental grasp of XML should be able describe some of the main differences outlined in the table below.
Differences Between XML and HTML
Table 1.
XML HTML
User definable tags Defined set of tags designed for web display
Content driven Format driven
End tags required for well formed documents End tags not required
Quotes required around attributes values Quotes not required
Slash required in empty tags Slash not required
Describe the role that XSL can play when dynamically generating HTML pages from a relational database.
Even if candidates have never participated in a project involving this type of architecture, they should recognize it as one of the common uses of XML. Querying a database and then formatting the result set so that it can be validated as an XML document allows developers to translate the data into an HTML table using XSLT rules. Consequently, the format of the resulting HTML table can be modified without changing the database query or application code since the document rendering logic is isolated to the XSLT rules.
Give a few examples of types of applications that can benefit from using XML.
There are literally thousands of applications that can benefit from XML technologies. The point of this question is not to have the candidate rattle off a laundry list of projects that they have worked on, but, rather, to allow the candidate to explain the rationale for choosing XML by citing a few real world examples. For instance, one appropriate answer is that XML allows content management systems to store documents independently of their format, which thereby reduces data redundancy. Another answer relates to B2B exchanges or supply chain management systems. In these instances, XML provides a mechanism for multiple companies to exchange data according to an agreed upon set of rules. A third common response involves wireless applications that require WML to render data on hand held devices.
What is DOM and how does it relate to XML?
The Document Object Model (DOM) is an interface specification maintained by the W3C DOM Workgroup that defines an application independent mechanism to access, parse, or update XML data. In simple terms it is a hierarchical model that allows developers to manipulate XML documents easily Any developer that has worked extensively with XML should be able to discuss the concept and use of DOM objects freely. Additionally, it is not unreasonable to expect advanced candidates to thoroughly understand its internal workings and be able to explain how DOM differs from an event-based interface like SAX.
What is SOAP and how does it relate to XML?
The Simple Object Access Protocol (SOAP) uses XML to define a protocol for the exchange of information in distributed computing environments. SOAP consists of three components: an envelope, a set of encoding rules, and a convention for representing remote procedure calls. Unless experience with SOAP is a direct requirement for the open position, knowing the specifics of the protocol, or how it can be used in conjunction with HTTP, is not as important as identifying it as a natural application of XML.
Can you walk us through the steps necessary to parse XML documents?
Superficially, this is a fairly basic question. However, the point is not to determine whether candidates understand the concept of a parser but rather have them walk through the process of parsing XML documents step-by-step. Determining whether a non-validating or validating parser is needed, choosing the appropriate parser, and handling errors are all important aspects to this process that should be included in the candidate's response.
Give some examples of XML DTDs or schemas that you have worked with.
Although XML does not require data to be validated against a DTD, many of the benefits of using the technology are derived from being able to validate XML documents against business or technical architecture rules. Polling for the list of DTDs that developers have worked with provides insight to their general exposure to the technology. The ideal candidate will have knowledge of several of the commonly used DTDs such as FpML, DocBook, HRML, and RDF, as well as experience designing a custom DTD for a particular project where no standard existed.
Using XSLT, how would you extract a specific attribute from an element in an XML document?
Successful candidates should recognize this as one of the most basic applications of XSLT. If they are not able to construct a reply similar to the example below, they should at least be able to identify the components necessary for this operation: xsl:template to match the appropriate XML element, xsl:value-of to select the attribute value, and the optional xsl:apply-templates to continue processing the document.
Extract Attributes from XML Data
Example 1.
Attribute Value:
When constructing an XML DTD, how do you create an external entity reference in an attribute value?
Every interview session should have at least one trick question. Although possible when using SGML, XML DTDs don't support defining external entity references in attribute values. It's more important for the candidate to respond to this question in a logical way than than the candidate know the somewhat obscure answer.
How would you build a search engine for large volumes of XML data?
The way candidates answer this question may provide insight into their view of XML data. For those who view XML primarily as a way to denote structure for text files, a common answer is to build a full-text search and handle the data similarly to the way Internet portals handle HTML pages. Others consider XML as a standard way of transferring structured data between disparate systems. These candidates often describe some scheme of importing XML into a relational or object database and relying on the database's engine for searching. Lastly, candidates that have worked with vendors specializing in this area often say that the best way the handle this situation is to use a third party software package optimized for XML data.
Obviously, some important areas of XML technologies were not included in this list -- namespaces, XPointer, XLink, and so on -- and should be added to the interviewer's set of questions if applicable to the particular position that the candidate is applying for. However, these questions in conjunction with others to assess soft skills (communication skills, ability to work on teams, leadership ability, etc.) will help determine how well candidates understand the fundamental principles of XML.
What is Xpath?
What is Xpath?
XPath is used to navigate through elements and attributes in an XML document.
What is XSL?
XSLT - a language for transforming XML documents
XSLT is used to transform an XML document into another XML document, or another type of document that is recognized by a browser, like HTML and XHTML. Normally XSLT does this by transforming each XML element into an (X)HTML element.
XPath - a language for navigating in XML documents
XSL-FO - a language for formatting XML documents
How Schemas Differ from DTDs?
The first, and probably most significant, difference between XML Schemas and XML DTDs is that XML Schemas use XML document syntax. While transforming the syntax to XML doesn’t automatically improve the quality of the description, it does make those descriptions far more extensible than they were in the original DTD syntax. Declarations can have richer and more complex internal structures than declarations in DTDs, and schema designers can take advantage of XML’s containment hierarchies to add extra information where appropriate — even sophisticated information like documentation. There are a few other benefits from this approach. XML Schemas can be stored along with other XML documents in XML-oriented data stores, referenced, and even styled, using tools like XLink, XPointer, and XSL.
The largest addition XML Schemas provide to the functionality of the descriptions is a vastly improved data typing system. XML Schemas provide data-oriented data types in addition to the more document-oriented data types XML 1.0 DTDs support, making XML more suitable for data interchange applications. Built-in datatypes include strings, booleans, and time values, and the XML Schemas draft provides a mechanism for generating additional data types. Using that system, the draft provides support for all of the XML 1.0 data types (NMTOKENS, IDREFS, etc.) as well as data-specific types like decimal, integer, date, and time. Using XML Schemas, developers can build their own libraries of easily interchanged data types and use them inside schemas or across multiple schemas.
The current draft of XML Schemas also uses a very different style for declaring elements and attributes to DTDs. In addition to declaring elements and attributes individually, developers can create models — archetypes — that can be applied to multiple elements and refined if necessary. This provides a lot of the functionality SOX had developed to support object-oriented concepts like inheritance. Archetype development and refinement will probably become the mark of the high-end schema developer, much as the effective use of parameter entities was the mark of the high-end DTD developer. Archetypes should be easier to model and use consistently, however.
XML Schemas also support namespaces, a key feature of the W3C’s vision for the future of XML. While it probably wouldn’t be impossible to integrate DTDs and namespaces, the W3C has decided to move on, supporting namespaces in its newer developments and not retrofitting XML 1.0. In many cases, provided that namespace-prefixes don’t change or simply aren’t used, DTD’s can work just fine with namespaces, and should be able to interoperate with namespaces and schema processing that relies on namespaces. There will be a few cases, however, where namespaces may force developers to use the newer schemas rather than the older DTDs.
ஏஞ்சல்
என்னை பற்றி
Google reader
Categories
- .Net (9)
- .Net Crystal Report (1)
- .Net GridView (3)
- Articles (5)
- Log File .Net (1)
- Sharepoint (2)
- Sitefinity 3.7 (3)
- SQL (5)
- Technical Question and Ans (3)
- Validation (1)
- XML (2)
Monday, June 22, 2009
XML Question & Ans
Posted by Meera at 5:13 AM
Labels: Technical Question and Ans
When hearts listen
angel sing.If you seek an angel with an open heart...
You shall always find loved one